博弈论

2023-02-22 01:38:18   第一文档网     [ 字体: ] [ 阅读: ] [ 文档下载 ]

#第一文档网# 导语】以下是®第一文档网的小编为您整理的《博弈论》,欢迎阅读!
博弈论


博弈论的目的在于巧妙的策略,而不是解法。学习博弈论的目的,不是为了享受博弈分析的过程,而在于赢得更好的结局。博弈的思想既然来自现实生活,它就可以高度抽象化地用数学工具来表述,也可以用日常事例来说明,并运用到生活中去。博弈时时存在,它就在你的身边。《博弈论的诡计》就是试图通过日常生活中常见的例子,来介绍博弈论的基本思想及运用,并且寻求用种智慧来指导生活决策的方法。阅读本书,我们除了了解到令人震撼的社会真实轨迹之外,还可以学到最合适的为人处世方



博弈论(Game Theory),博弈论是指研究多个个体或团队之间在特定条件制约下的对局中利用相关方的策略,而实施对应策略的学科。有时也称为对策论,或者赛局理论,是研究具有斗争或竞争性质现象的理论和方法,它是应用数学的一个分支,既是现代数学的一个新分支,也是运筹学的一个重要学科。目前在生物学经济、国际关系学、计算机科学政治学、军事战略和其他很多学科都有广泛的应用。主要研究公式化了的激励结构(游戏或者博弈(Game))间的相互作用,是研究具有斗争或竞争性质现象的数学理论和方法,也是运筹学的一个重要学科

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。表面上不同的相互作用可能表现出相似的激励结构(incentive structure),所以他们是同一个游戏的特例。其中一个有名有趣的应用例子是囚徒困境悖论(Prisoner's dilemma)

具有竞争或对抗性质的行为成为博弈行为。在这类行为中,参加斗争或竞争的各方各自具有不同的目标或利益。为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。比如日常生活中的下棋,打牌等。博弈论就是研究博弈行为中斗争各方是否存在着最合理的行为方案以及如何找到这个合理的行为方案的数学论和方法。

生物学家使用博弈理论来理解和预测进化论的某些结果。例如:John Maynard Smith George R. Price1973年发表于Nature上的论文中提出的“evolutionarily stable strategy”的这个概念就是使用了博弈理论。还可以参见演化博弈理论evolutionary game theory)和行为生态学behavioral ecology)。

博弈论也应用数学的其他分支,如概率论统计线性规划等。 [编辑]

博弈论的意义






博弈论的研究方法和其他许多利用数学工具研究社会经济现象的学科一样都是从复杂的现象中抽象出基本的元素,对这些元素构成的数学模型进行分析,而后逐步引入对其形势产影响的其他因素,从而分析其结果。

基于不同抽象水平,形成三种博弈表述方式,标准型、扩展型和特征函数型,利用这三种表述形式,可以研究形形色色的问题。因此,它被称为社会科学数学理论上讲,博弈论是研究理性的行动者相互作用的形式理论,而实际上正深入到经济政治学、社会学等等,被各门科学应用

博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自选择的行为或是策略进行选择并加以实施,并从各自取得相应结果或收益的过程,经济学上博弈论是个非常重要的理论概念。

什么是博弈论?古语有云,世事如棋。生活中每个人如同棋手,其每一个行为如同在一张看不见的棋盘上布一个子精明慎重的棋手们相互揣摩相互牵制人人争赢下出诸多精彩纷呈、变化多端的棋局。博弈论是研究棋手们 出棋着数中理性化、逻辑化的部分,并将其系统化为一门科学。换句话说,就是研究个体如何在错综复杂的相互影响中得出最合理的策略。事实上,博弈论正是衍生于古老的游戏或曰博弈如象棋、扑克等。数学家们将具体的问题抽象化,通过建立自完备的逻辑框架、体系研究其规律及变化。这可不是件容易的事情,以最简单的二人对弈为例,稍想一下便知此中大有玄妙:若假设双方都精确地记得自己和对手的每一步棋且都是最的棋手,甲出子的时候,为了赢棋,得仔细考虑乙的想法,而乙出子时也得考虑甲的想法,所以甲还得想到乙在想他的想法,乙当然也知道甲想到了他在想甲的想法

面对如许重重迷雾,博弈论怎样着手分析解决问题,怎样对作为现实归纳的抽象数学问题求出最优解、从而为在理论上指导实践提供可能性呢?现代博弈理论由匈牙利大数学家冯·诺伊曼20世纪20年代开始创立,1944年他与经济学家奥斯卡·摩根斯特恩合作出版的巨著《博弈论经济行为》,标志着现代系统博弈理论的初步形成。对于非合作、纯竞争型博弈,诺伊曼所解决的只有二人零和博弈--好比两个人下棋、或是打乒乓球,一个人赢一着则另一个人必输一着,净获利为零。在这里抽象化后的博弈问题是,已知参与者集合(两方) 策略集合(所有棋着) 和盈利集合(赢子输子) ,能否且如何找到一个理论上的平衡,也就是对参与双方来说都最合理、最优的具体策略?怎样才是合理应用传统决定论中的最小最大准则,即博弈的每一方都假设对方的所有功略的根本目的是使自己最大程度地失利并据此最优化自己的对策,诺伊曼从数学上证明,通过一定的线性运算,对于每一个二人零和博弈,都能够找到一个小最大解。通过一定的线性运算,竞争双方以概率分布的形式随机使用某套最优策略中的各个步骤,就可以最终达到彼此盈利最大且相当。当然,其隐含的意义在于,这套最优策略并不依赖于对手在博弈中的操作用通俗的话说这个著名的最小最大定理所体现的基本理性思想是最好的希望,做最坏的打算 [编辑]

博弈论分析




本文来源:https://www.dy1993.cn/oRvK.html

相关推荐