【#第一文档网# 导语】以下是®第一文档网的小编为您整理的《T检验及其与方差分析的区别》,欢迎阅读!

T
检
验
及
其
与
方
差
分
析
的
区
别
假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。
t 检验:1.单因素设计的小样本(n<50)计量资料
2.样本来自正态分布总体 3.总体标准差未知
4.两样本均数比较时,要求两样本相应的总体方差相等 • 根据研究设计t检验可由三种形式:
– 单个样本的t检验
– 配对样本均数t检验(非独立两样本均数t检验) – 两个独立样本均数t检验
(1)单个样本t检验
• 又称单样本均数t检验(one sample t test),适用于样本均数与已知总体均数
μ0的比较,其比较目的是检验样本均数所代表的总体均数μ是否与已知总体
均数μ0有差别。
• 已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。 • 单样t检验的应用条件是总体标准未知的小样本资料( 如n<50),且服从正态分布。
(2)配对样本均数t检验
• 配对样本均数t检验简称配对t检验(paired t test),又称非独立两样本均数
t检验,适用于配对设计计量资料均数的比较,其比较目的是检验两相关样本均
数所代表的未知总体均数是否有差别。
• 配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,
每对中的两个个体随机地给予两种处理。
• 应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。 • 配对设计处理分配方式主要有三种情况:
①两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对;
②同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例5.2资料;
③自身对比(self-contrast)。即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。 (3)两独立样本t检验
两独立样本t 检验(two independent samples t-test),又称成组 t 检验。 • 适用于完全随机设计的两样本均数的比较,其目的是检验两样本所来自总体的均数是否相等。
• 完全随机设计是将受试对象随机地分配到两组中,每组对象分别接受不同的处理,分析比较处理的效应。或分别从不同总体中随机抽样进行研究。 • 两独立样本t检验要求两样本所代表的总体服从正态分布N(μ1,σ12)和N(μ
2
,σ22),且两总体方差σ12、σ22相等,即方差齐性(homogeneity of variance,
homoscedasticity)。
• 若两总体方差不等,即方差不齐,可采用t’检验,或进行变量变换,或用秩和检验方法处理。
t 检验中的注意事项
1. 假设检验结论正确的前提 作假设检验用的样本资料,必须能代表相应的总体,同时各对比组具有良好的组间均衡性,才能得出有意义的统计结论和有价值的专
本文来源:https://www.dy1993.cn/dNLK.html