【#第一文档网# 导语】以下是®第一文档网的小编为您整理的《市一等奖 《角的平分线的性质》知识点 》,欢迎阅读!
![分线,知识点,一等奖,性质](/static/wddqxz/img/rand/big_55.jpg)
本节课是本单元中,对知识的理解和贯彻最重要的一堂课。在高效课堂模式中,一堂课的紧凑性和教师活动的多少,决定着课堂容量的高低。但在实际教学中,教师应尽可能少地利用讲授法进行教学,多与学生进行交流,增加学生的实际操练和练习时间,对于一堂课来讲,是至关重要的。对于课堂环节的布置,应该力求简练,语言应用尽量通俗易懂。
对于一名教师而言,教学质量的高低,与备课的充足与否有很大关系。而教案作为这一行为的载体,巨大作用是不言而喻的。本节课的准备环节,就充分地说明了这个道理。
角平分线的性质
一、本节学习指导
角平分线的性质有助于我们解决三角形全等相关题型。其实不仅仅是角平分线,还有三角形的中位线、高、中心都是解决三角形题目有效的途径。本节有配套免费学习视频。
二、知识要点
1、角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。
如下图:OC平分∠AOB
∵OC平分∠AOB ∴∠AOC=∠BOC
2、角的平分线的性质:角平分线上的点到角的两边的距离相等。【重点】 如第一个图:
∵OC平分∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB
∴PD=PE,此时我们知道△OPE≌△OPD(直角三角形 斜边是OP即公共边,直角边斜边) 3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上。 如第一个图:
∵PE⊥OA,PD⊥OB,PD=PE
∴OC平分∠AOB(或∠1=∠2)
4、线段的中点的定义:把一条线段分成两条相等的线段的点叫做线段的中点。
如下图:
∵C是AB的中点 ∴AC=BC
5、垂直的定义:两条直线相交所成的四个角中有一个是直角,这两条直线互相垂直。 如图:【重点】
∵AB⊥CD
∴∠AOC=∠AOD=∠BOC =∠BOD=90° 或∵∠AOC=90° ∴AB⊥CD
注意:要判断两条直线垂直,只要知道这两条相交直线所形成的四个角中的 一个角是直角就可以了。反过来,两条直线互相垂直,它们的四个交角都是直角。 6、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。 ∵△ABC≌△A'B'C'
∴AB=A'B',BC=B'C',AC=A'C'; ∠A=∠A', ∠B=∠B', ∠C=∠C' 三、经验之谈:
本文来源:https://www.dy1993.cn/SxkK.html