【#第一文档网# 导语】以下是®第一文档网的小编为您整理的《数学专业毕业论文开题报告-1》,欢迎阅读!
![开题,毕业论文,数学,报告,专业](/static/wddqxz/img/rand/big_128.jpg)
数学专业毕业论文开题报告
数学专业毕业论文开题报告
拟选题目:函数项级数一致收敛的判别 选题依据及研究意义
函数项级数的一致收敛性的判定是数学分析中的一个重要知识点,函数项级数既可以被看作是对数项级数的推广,同时数项级数也可以看作是函数项级数的一个特例。它们在研究内容上有许多相似之处,如研究其收敛性及和等问题,并且它们很多问题都是借助数列和函数极限来解决,同时它们敛散性的判别方法也具有相似之处,如Cauchy判别法,阿贝尔判别法,狄利克雷判别法等。教材中给出了对于()nux一致收敛性的判别法,如Cauchy判别法,阿贝尔判别法,狄利克雷判别法等,但在具体进行一致收敛的判别时,往往会有一定的困难,这就需要我们有效地运用函数项级数一致收敛的.判别法。而次课题除了叙述以上判别法外,还对这些判别方法进行了一些推广,从而进一步丰富了判别函数项级数一致收敛的方法。
选题研究现状
目前通用的数学分析教材(如华东师范大学,复旦大学,吉林大学,北京师范大学等)其介绍的主要内容如下:M判别法,狄利克雷判别法,阿贝尔判别法,柯西收敛准则等,用来判别一些级数的一致收敛性问题,其他一些数学方面的工作者对某些特殊级数的收敛性进行了讨论。当前对级数的收敛性的讨论研究已经到达比较高级阶段,分枝也比较细,发展也相对较完善。但在许多实际解题过程中,往往不是特定的级数,用特殊的方法不能解决。故需对特殊级数情况要总结和发展。
研究内容(包括基本思路、框架、主要研究方式、方法等)
基本思路:首先从定义出发,让读者了解函数项级数及一致收敛的定义,对函数项级数一致收敛有一个大致的认识,并对其进行一定的说明,且将收敛与一致收敛做一个比较,使读者对其有一个更深刻的认识。随后给出一些常见的一致收敛的判别法,并附上例题加以说明。当熟悉了一般的判别法后,我将其加以推广,得到一些特殊的判别法,如比式判别法,根式判别法,对数判别法等。
框架:主要由论文题目“函数项级数一致收敛的判别”、摘要、关键词、引言、函数项级数及一致收敛的定义、函数项级数一致收敛的一般判别法及推广、小结、参考文献等组成。
主要研究的方式、方法:首先介绍函数项级数及一致收敛的定义,然后给出一些常见的判别法,并用一系列的例题加以说明,在将判别法加以推广。 研究内容:第一部分简单介绍函数项级数及一致收敛的定义,第二部分主要介绍函数项级数一致收敛的一般判别方法,如柯西一致收敛准则、余项判别法、魏尔斯特拉斯判别法、狄利克雷判别法、阿贝尔判别法等,再进行推广。第三部分是总结其研究的必要性。
论文提纲(含论文选题、论文主体框架) 论文题目:函数项级数一致收敛的判别 论文主体框架:
1、引言 2、定义 函数项级数定义
函数项级数一致收敛的定义 3、函数项级数一致收敛的判别方法 柯西一致收敛准则 余项判别法 魏尔斯特拉斯判别法 狄利克雷判别法 阿贝尔判别法
4、函数项级数一致收敛判别方法的推广 比式判别法 根式判别法 对数判别法 积分判别法 确界判别法 5、结束语
阐明总结函数项级数一致收敛判别方法的重要性及必要性。
本文来源:https://www.dy1993.cn/SVYx.html