【#第一文档网# 导语】以下是®第一文档网的小编为您整理的《Latex模板》,欢迎阅读!
Latex模板
\\documentclass{article}
\\RequirePackage[l2tabu, orthodox]{nag}%检测文档中过时或淘汰的宏包 \%usepackage{graphicx}%图
\%usepackage{fancyhdr}%页眉页脚 \%usepackage{fontspec}%调用系统字体 \%usepackage{xeCJK}%区别中英文字体
\%usepackage{amsmath}%属于AMS系列宏包,引入了改进的数学环境 \%usepackage{siunitx}%简化写作科技文的TeX命令 \%usepackage{array}
\%usepackage{booktabs}%创建没有竖线分隔的表格
\\setCJKmainfont{SimSun}%中日韩文主字体 \\setCJKsansfont{SimHei}%无衬线字体 \\punctstyle{kaiming}%标点
\%usepackage{microtype}%改善单词、字母的间距
\%usepackage[colorlinks=false, pdfborder={0 0 0}]{hyperref}%超链接 \%usepackage{cleveref}%简化写作
\\pagestyle{fancy}%页眉页脚格式 \\lhead{M}%页眉左 \\chead{N} \\rhead{D} \\lfoot{}%页脚左 \\cfoot{}
\\rfoot{Page \\thepage} \\begin{document} \\title{一个浸入界面方法Pennes生物传热方程} \\author{Champike Attanayake,So-Hsiang Chou} \\date{\\today}
\\maketitle%生成标题 \\begin{abstract}%摘要
我们考虑一个浸入有限元方法求解拥有间断系数和非齐次流量跳跃条件的一维Pennes生物传热方程。
半离散和全离散格式的收敛特性进行了L2范数和能量范数的探讨。 根据浸入有限元方法,通过使用计算解决方
案,
一个廉价而有效的通量恢复技术被用来近似在整个域的流量。 证明了有限元逼近及其通量的最优阶收敛阶。 仿真结果证实了收敛性分析。 \\end{abstract} \\newpage%换页 \\tableofcontents%目录 \\newpage \\section{Introduction}%部分
在本文中,我们考虑一个抛物型生物传热方程
\\begin{equation*} %方程组开始 \\left\\{ %方程组的左边包括大括号\\{ \\begin{array}{lll} %设定列阵的格式:{lll}是三个L,表示三列的对齐方式为Left对齐
\\gamma T_t - \\beta T_{x x} = T_a - T , \\hspace{0.3cm} (x,t)\\in I \\times J ,\\\\ %$―― 分隔列的标记,\\\\―― 表示换行
T(x,0) = T_0 ,\\hspace{1.7cm} x \\in I, \\\\ T(a,t) = T(b,t) = 0,\\hspace{0.5cm} t > 0, \\\\
{\\lbrack T \\rbrack}_{\\alpha} = 0,{\\lbrack \\beta T_x \\rbrack}_{\\alpha} = Q,%$ 同上 \\end{array} %方程列阵的结束 \\right.\\eqno(1.1) %方程组的右边无符号,利用“.“来标示 \\end{equation*} %方程组结束
其中 T 是 {I = \\lbrack a,b\\rbrack} 段、时间在{J = \\lbrack 0,t\\rbrack} 段上的温度分布。 材质参数 $\\beta$ 和 $\\gamma$ 是分段常数,反映了这个问题的界面性质。
量 $q$ 在界面 $\\alpha$ 的跳跃用 $\\lbrack q \\rbrack_\\alpha$ 和 $Q = \\lbrack \\beta T_x \\rbrack_\\alpha$ 来表示,界面的通量跳跃被认为是给定的。$T_a$ 是一个给定的固定的温度。均匀温度边界条件在理论部分的陈述是简单的。 混合温度和通量边界条件的情形将在最后一部分通过数值例子来考虑。
通过对生物体表面加热或冷却的传热分析已被许多研究人员研究过了 $\\lbrack 5,7,12,13 \\rbrack$。在许多关于传热的诊断和治疗应用中,温度的瞬态和空间分布的
本文来源:https://www.dy1993.cn/77Ex.html